State transformation for euler-lagrange systems
نویسندگان
چکیده
The transformation of an Euler-Lagrange system into a state affine system in order to solve some interesting problem as the design of observer, the output tracking control, is considered in this paper. A necessary and a sufficient condition is given as well as a method to compute this transformation.
منابع مشابه
An analytic study on the Euler-Lagrange equation arising in calculus of variations
The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...
متن کامل. SG ] 1 5 Ju n 19 99 Discrete Lagrangian reduction , discrete Euler – Poincaré equations , and semidirect products
A discrete version of Lagrangian reduction is developed in the context of discrete time Lagrangian systems on G×G, where G is a Lie group. We consider the case when the Lagrange function is invariant with respect to the action of an isotropy subgroup of a fixed element in the representation space of G. In this context the reduction of the discrete Euler–Lagrange equations is shown to lead to th...
متن کاملDiscrete Lagrangian and Hamiltonian Mechanics on Lie Groupoids
The purpose of this paper is to describe geometrically discrete Lagrangian and Hamiltonian Mechanics on Lie groupoids. From a variational principle we derive the discrete Euler-Lagrange equations and we introduce a symplectic 2-section, which is preserved by the Lagrange evolution operator. In terms of the discrete Legendre transformations we define the Hamiltonian evolution operator which is a...
متن کاملOptimal performance of constrained control systems
This paper presents a method to compute optimal open-loop trajectories for systems subject to state and control inequality constraints in which the cost function is quadratic and the state dynamics are linear. For the case in which inequality constraints are decentralized with respect to the controls, optimal Lagrange multipliers enforcing the inequality constraints may be found at any time thr...
متن کاملA Novel Variational Principle arising from Electromagnetism
Analyzing one example of LC circuit in [8], show its Lagrange problem only have other type critical points except for minimum type and maximum type under many circumstances. One novel variational principle is established instead of Pontryagin maximum principle or other extremal principles to be suitable for all types of critical points in nonlinear LC circuits. The generalized Euler-Lagrange eq...
متن کامل